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SUMMARY 

Woodward's panel method for subsonic and supersonic flow is improved 

by employing control points determined by exactly matching two-dimensional 

pressure at a finite number of points. The results show great improvement 

in the predicted pressure distribution of a flapped airfoil. With the 

paneling scheme of cosine law in both chordwise end spanwise directions, 

the method is shown to accurately predict leading-edge and side-edge suction 

forces of various configurations in subsonic and supersonic flow. 

INTRODUCTION 

Woodward's unified subsonic and supersonic panel method (ref. 1) with 

constant pressure panels has been in wide use for sometime. The predicted 

overall longitudinal aerodynamic characteristics by the method are reasonably 

accurate. However, the predicted lifting pressure distribution is not 

accurate enough for calculating the leading-edge and side-edge suction 

forces. The latter are quite sensitive to the paneling scheme and the 

control point locations. In reference 2, a paneling scheme derived from 

numerical experimentation was suggested for calculating the leading edge 

suction. Again, this approach is still not good enough for calculating the 

a-.- _ ._._. - -. - .~- - -- ~- - --- 
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side-edge suction force. Examination of the two-dimensional flat plate 

problem indicated that if a constant-percent control point location is 

used, the overall force and moment and the pressure distribution cannot be 

accurately predicted simultaneously. Originally, Woodward (ref. 1) recommended 

95% of the panel chord as the suitable location for the control point. Later, 

85% location was suggested based on matching the two-dimensional lift of a 

flat plate (refs. 3,4). However, 85% location of control point does not 

produce accurate pressure distribution and pitching moment. 

Recently, Dillenius and Nielsen (ref. 5) used the panel method to 

calculate the leading-edge and side-edge suctions in supersonic flow. After 

the strengths of the panel singularity have been obtained, they replaced 

them by a system of equivalent horseshoe vortices. The in-plane forces 

are then calculated by applying Kutta-Joukowski theorem and assumed to be 

acting along the planform edges. Only few supersonic results have been 

compared with other known theoretical calculation. 

In this report, a new method to improve Woodward's panel method will 

be described. The pressure prediction is improved based on two-dimensional 

theory. The method used in reference 6 is then applied to calculating the 

leading-edge and side-edge suction forces by directly using the predicted 

pressure distribution. The method is applicable in both subsonic and 

supersonic flow. 

SYMBOLS 

A aspect ratio 

C leading-edge suction parameter (see equation 23) 

cL 
total lift coefficient 

C chord length 
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Cd 
i 

?L 

C m 

C r 

C ref 

C S 

Ct 

h/c 
+t+ 
1,~ ,k 

K 
P 

K v,Re 

K v,se 

M 

Nc 
NS 

S 

St 

X,Y,Z 

X 
CP 

XR 

zc (El 

a 

6 C 

sectiordl induced drag coefficient 

sectional lift coefficient 

sectional pftching moment coefficient about local leading edge 

root chord 

reference chord 

sectional leading-edge suction coefficient 

sectional leading-edge thrust coefficient 

maximum camber height to chord ratio 

unit vectors along x-, y- and z-axes, respectively 

planform lift curve slope per radian at c1 = O" 

leading-edge suction coefficient at one radian angle of attack 

side-edge suction coefficient at one radian angle of attack 

Mach number 

number of chor&ise panels 

number of spsnwise strips 

distance from the leading-edge along the camber line nondimen- 

sionalized with respect to the local chord 

side-edge suction force per unit length of tip chord 

wing-fixed rectangular coordinates with positive x-axis along axis 

of symmetry pointing downstream, positive y-axis pointing to 

right, ana positive z-axis pointing upward 

x- coordinate of center of pressure 

x-coordinate of the leading-edge 

camber function 

angle of attack 
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6f 

6 0 

r 

Y 

A 

x 

5 

flap angle 

= 6 C at the leading edge 

accumulated vortex strength defined by Eq. (28) 

vortex density 

leading-edge sweep angle 

taper ratio 

= (x-x )/c R 

THEORETICAL DEVELOPMENT 

Airfoils 

Planar 

The main objective in the initial development is to predict exactly 

the pressure distribution of a flat-plate airfoil at those locations such 

that the lift and moment coefficients can be easily obtained by integrating 

the pressure. According to the Quasi-Vortex-Lattice Method (QVLM) (Ref. 7), 

these locations are best to be given by the cosine law distribution: 

5, = (1 - cos((2k - 1)r/2Nc))/2, k = 1, . . . . Nc (1) 

where N C is the number of chordwise panels and chord length is assumed to 

be unity. The chordwise paneling scheme will be based on the following 

cosine law: 

5 j+l = (1 - cos(jn/Nc))/2, j = 0, 1, .-., NC c-2 ) 

Assuming the angle of attack to be one radian, the airfoil integral 

equation can be written as 
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AC (59as’ 
47T=r; p 5 - 5’ (3) 

If the chord is divided into Nc segments on each of which AC is 
P 

assumed constant, equation (3) can be integrated over each segment to give 

43-r = 2 ACp(Sk)Rnl(Sj - Si)/(.Sj+l - <,)I, i = 1, . . . . Nc (4) 
j=l 

where 5 i is the control point location and 5. < 5, < 5. 
J J+l’ Equation (4) 

will now be used to find 5 i such that the predicted AC 
'k 

= ACp(Sk) 

will be exact. Since the problem is a nonlinear one, it can be solved by 

the following iterative method. Differentiating equation (4) with respect 

to Si gives 

NC aAC 
sj - si 

N 
'k 

$ q-- Rnl sj+l - si 1 = - g ACPk [5j+11- si - sj 1 <,I ' i = ly--- sNc 

(5) 

Solving equation (5) will result in a set of aacpk/agi - values. If 

ACW . 1s the desired value and AC (') 
'k 'k 

is the computed one, an incremental 

change in control point location A<. can be obtained from 1 

- AC(') 
pk ' 

k=l, . . . . Nc (6) 

If the starting ci is chosen at 95% of panel chord, four or five iterations 

can produce essentially exact solution. Once AC 
'k 

are obtained, the lift 

coefficient is computed as 

= I1 AC a< = 1 In AC 1lT Nc 
CR 0 p 20 P 

sine& = 2~ x AC sin0 k (7) 
c k=l 'k 

-. 
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Similar expression for cm can be derived. With the predicted pressure 

distribution, the leading edge suction can easily be calculated. 

Cambered 

The control points found by the above method can be used directly for 

cambered airfoils. In this case, the flow tangency condition to be 

satisfied is developed as follows. Let the camber shape be described by I) 

F(S,z) = z - zc(C) = o (8) 

The flow tangency condition is then given by 

(V~coscx~ + VmsinCZ + u? + WC) l (- 
az 
"T+ ;, = 0 
at 

(9) 

or, in linearized form, 

az 
= -sine. + coscl * (10) 

After AC is calculated by satisfying equation (lo), the aerodynamic 
P 

forces can be calculated by resolving in the appropriate directions the 

pressure force which is assumed to act normal and along the camber line. 

According to the incompressible Bernoulli equation, the pressure coefficient 

for lift at high ~1, C', is related to Cp at small 0: as follows: 
P 

c; = 1 - % [(v,cosc1 + u) 2 + (Voosincx + w)2] = -2(cosa)u (11) 
Vcu 

= ( cosa) c 
P 



It follows that 

CR = Is, ACpcosa COS(.CY - 6c)as + ct sin(a -.60) 

= ri ACp 
cos(a - AC) 

cosa cos6_ ag + ct sin(cr - 60) 
c; 

sin(cr - 6c) 
Cd COSCY. 

i 
= It ACp cos6 aS - ct cos(cr - q 

C 

C =- 
m i~SACpCosdE 15) 

aZ 
where 6c = tan-l($) ma s is the length of camber line nondimensionalized 

with respect to the chord, and 6. is 6c evaluated at the leading edge. 

The integrals in equation (1X)-(15) can be evaluated by midpoint trapezoidal 

rule on the I3 - plane as illustrated in equation (7). The above formulation 

can be easily shown to be consistent with the exact theory for a flat- 
aZ 

plate airfoil. For example, with c = 0 in equation (10) the solution 
at 

AC; = ( coscx) AC 
P (12) 

where AC p is calculated through equation (10). According to figure 1, 

the aerodynamic characteristics are given by the following equations: 

obtained is the well known ACp = 4 m sina and hence ct = 2nsin2cr. 

It follows that 

C!2 = 2TsinWos2a + 2iTsin2asina = 2Tsina 

‘ai = 21Tcosasin2a - 27rsin2acoscr = 0 

C = - IL sincicosci m 2 

(16a) 
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Flapped 

The method described above can be extended to airfoils with flap 

deflection. In this case, the distribution of pressure points and panel sizes 

on the airfoil and the flap will be given separately by the cosine relation, 

following the QVLM (ref. 7). For a flat airfoil with flap deflection 6,, 

the exact linear solution is given by (ref. 8); 

ACp(<) = ka/$!$+ 4 $ kE+ Rn siI T ) 

CR 
= 2~~3 + 26f(~ + sinT) 

i-r C = - --a - 
2 6 (L+ sinT + 

mJ?.e. f2 
sin(2r)) 

4 

where 

cos$ = 25 - 1 

(17a) 

(17b) 

(17c) 

(18) 

COST = 25, - 1 

and 5 f is the flap hinge location. Using equation (17a) for the desired 

AC 
P' 

the correct control points can again be obtained through iteration. 

It should be noted that in general the iterative method to find the correct 

control points for a flapped airfoil may not converge, as some control 

points may move out of the corresponding panels at some iterative steps. 

When this happens, that particular control point is reset at 95% of the 

panel chord before the iteration is resumed. The correct set of control 

points is taken to be the one with least square difference of ACP between 

exact and calculated distribution. 
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Wings 

For three-dimensional wings with straight leading edges, the chordwise 

distribution of control points and panels follows directly from the two- 

dimensional theory described above. The spanwise distribution of control 

stations and panel width is based on that used in the QVLM (ref. 7) in 

accordance with the cosine law. The control stations are given by 

yi = (b/2)[1 - cos(ia/(Ns + 1))]/2, i=l, . . . . Ns (19) 

and the strip widths are given by 

'j 
= (b/2)[1 - cos((2j - l).rr/2(N, + 1))]/2, j=l, . . . . Ns + 1 (20) 

where Ns is the nlrnber of spanwise strips. The inboard gap created by 

the scheme given by equation (20) should be eliminated, and the tip inset 

from equation (20) is retained, as described in reference 7. In general, 

the control stations will not pass through the panel centroids. From 

extensive calculation, the chosen spanwise paneling scheme appears to be 

the best for calculating the side-edge suction force. 

Once the pressure distribution is obtained, the interpolation by 

Fourier series is used to find the distribution of the leading-edge 

suction, the streamwise vortex density, y,, and the side-edge suction. For 

example, to find the leading-edge suction parameter C, AC 
P 

is first 

multiplied by 2 &sin 0 and then developed in a cosine Fourier series: 

f(e) = $ ACpsine = a0 + 2 aj cos je 
j=l 

(21) 
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where the Fourier coefficients 
"3 

can be computed by midpoint trapezoidal 

rule in terms of AC as follows: 
P 

a 0 

a. 
J 

cosjede "- $ C f(0klcosj0k 
c k=l 

Near the leading edge, ACp "- C 4(1-x)/x . Hence, 

N 
C 

lim $ACp sine = C = a0 + 2 a. 
X+0 j=l J 

The sectional leading edge suction is then given by (ref. 2) 

C = 
S 

(r/8)~~(.1-~cos~~.~.)l'~/cos~~.~. 

(22a) 

(22b) 

(23) 

The side-edge suction per unit length of the tip chord is given by (see 

ref. 9) 

s,(.x) = T@*(X) (25) 

where G(x) is defined by 

G(x) = lim h - y/lb/p) $Y, 
y--3/2 

(24) 

(26) 

To find y,, the conservation of vorticity is used: 
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aY ay 
x+y=o 
ax ay (27) 

If r(x,Y) is defined as 

r(.X,Y) = - q Yy(X' ,Y)dx' 

equation (27) can be shown to give 

ark4 
ye = ay 

(28) 

(29) 

In the linear theory, y 
Y 

= aCp/2. Hence, equation (28) can be written as 

r(x,y) = - * 1: $ 
AcP sinede (30) 

Using equation (21), equation (30) can be integrated in closed form. The 

differentiation in equation (29) is performed through the use of trigonometric 

interpolation formula. The detail can be found in reference 6. 

As can be seen from the above description, not only the leading-edge 

and side-edge suction forces can be predicted by the method, but also the 

distribution of y, which is needed in calculating some lateral- 

directional stability derivatives. 

NUMERICAL RESULTS AND DISCUSSIONS 

Airfoils 

For a flat-plate airfoil in incompressible flow, all aerodynamic 

characteristics of interest can be exactly predicted by the present method. 
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The computed control points are in general located at 81.5% for the leading- 

edge panel and moved to 97.2% for the trailing-edge panel. For a cambered 

airfoil with or without flap deflection, only approximate results can be 

calculated. Figure 2 shows the comparison of the present predicted pressure 

distribution for a circular-arc airfoil with the results by conformal mapping 

(ref. 10). The lift coefficient and the center of pressure are presented in 

Table 1. It is seen that the present results are quite accurate. One 

indication of accuracy of the method is the magnitude of the calculated 

induced drag coefficient. The exact potential-flow solution is cd = 0. 
i 

For the circular-arc airfoil with h/c = 0.0314 as shown in figure 2, the 

calculated 'di is about 0.1% of c R' It becomes 0.2% of cR when h/c 

is increased to 0.20. 

The predicted pressure distribution for a flapped airfoil with flap 

chord ratio of 0.30, df = 30° and CI = 10' is presented in figure 3. 

Also shown is the result by the original Woodward's method, in which 

uniform panel size on the airfoil and flap is assumed. The calculated 

AC 
P 

is assumed to be at the panel midpoint. In both the original and the 

improved methods, seven and four panels are used on the airfoil and flap, 

respectively. The calculated cR and c 
"ke 

are also presented in Table 1. 

The discrepancy in the calculated cR and cm by the present method and 

the exact solution, as given in Table 1, is mainly due to the quadrature 

method used (i.e. midpoint trapezoidal rule) in integrating the pressure 

force. The method, which is also used in the &VI&!, cannot account exactly 

for the logarithmic singularity in the AC 
P 

distribution. Although the 

original Woodward's method can predict cR and c m reasonably well (see 

Table l), the calculated pressure distribution is inaccurate near the flap 
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hinge, as shown in figure 3. Note the present method and exact solution 

are in excellent agreement, to the extent, that the dashed curve cannot 

be distinguished from the solid curve. 

Wings 

In three-dimensional cases, it is assumed that the control point 

locations obtained from the two-dimensional theory are directly applicable. 

One important application of calculating leading-edge and side-edge 

suction forces is the prediction of vortex lift through Polhsmus' method 

of suction analogy as extended in reference 9. According to this method, 

the total lift coefficient for a flat wing exhibiting edge-separated vortex 

flow can be written as 

CL = Kpsincucos2a + (Kv Re + K, se) sin'ocoso 
, , 

(31) 

where the lift factors K 
P' 3 

Kv Re and K, se are the lift curve slope 
3 

per radian and the leading-edge and the side-edge suction coefficients at 

one radian of angle of attack, respectively, from linear potential theory. 

To validate the present method, extensive comparisons will be made 

of the predicted K 
P' , 

K, Re and K with other theoretical results. v,se 

Furthermore, from convergence studies with the present method, it was 

determined that solutions converged rapidly with increasing number of panels. 

For example, with eight or nine chordwise panels and 10 to 15 spanwise 

strips, aerodynamic characteristics of simple planforms can be accurately 

calculated with confidence. Further increase in the number of strips 

will not change the calculated results significantly. The results to be 

presented below were mostly obtained with nine chordwise elements and 12 

spanwise strips, except those cases when the pressure distribution is desired. 
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In these cases, 13 spanwise strips were used. Since the chordwise control- 

point locations are based on the two-dimensional incompressible flow theory, 

any deviation of the pressure distribution from the two-dimensional theory 

will lead to some inaccuracy of the method. This appears to be the case in 

predicting Kv Re for highly swept planforms in subsonic and supersonic flow 
, 

with leading-edge sweep angle 2 60’. In both situations, the predicted 

K v,Re was found to be slightly too high. This problem has been solved 

empirically by moving downstream the control points of the leading-edge 

panels by a certain percent, A, of the elemental panel chord, where, 

for M < 1, A=0 for A < 60’ - 

A = 0.35 (A - 60) for A > 60’ 

for M 11, A = 3.0 for A < 60’ - 

A = 3.0 + 0.35 (A - 60) for A > 60’ 

For cranked wings also, a uniform constant percent chordwise location for the 

first control point is used all across the span for simplicity. The sweep 

angle for determining its location is obtained by weighting the sweep angles 

with respect to the length of the leading-edges of each section. 

Typical pressure distributions in supersonic flow are presented in 

figures 4 and 5 and are compared with the exact solution obtained from reference 

11. The most visible improvement in the predicted pressure distribution 

appears to be over the inboard section. To improve the predicted pressure 

distribution in the tip region, it was found that the number of spsnwise 

strips has to be further increased. However, the inaccuracy in the 

predicted pressure distribution in the tip region apparently does not affect 

the accuracy of the overall force coefficients because of the decreasing 

chord. The lift factors K K p' v,Re andK v se for the rectangular wing 

of aspect ratio 2.0 are presented in fi&e 6 as a function of Mach number 

and tabulated also in Table 2. The agreement of the present results with 
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Lamar's (ref. 9) in subsonic flow is excellent. This is particularly true 

in K and K 
P 

v Re prediction in that the present results are indistinguishable 
, 

from Lsmar's. The supersonic results also agree well with the exact linear 

theory (ref. 12 and 13). Note that the original Woodward's method tends to 

predict higher K . 
P 

The results for a cropped delta wing of low aspect ratio are presented 

in figure 7 and Table 3. The agreement with other theoretical results 

appears to be reasonably good, except that the predicted Kv Re in subsonic 
3 

flow are slightly higher than those given by Multhopp's method of Lamar 

(ref. 9). (The effect of Mach number on K was first shown for these v,se 

two wings in reference 14). 

The sectional leading-edge and wing-tip suction coefficients for 

cropped delta wing are plotted in figures 8 and 9 at Mach numbers 0 and 1.8. 

At both Mach numbers the sectional leading-edge suction coefficients agree 

very well with other methods (refs. 7, 9, 11 and 15) in the inboard region. 

The agreement is not as good in the tip region. With regard to the wing- 

tip suction coefficients, at subsonic speed the present method is in good 

agreement with that of Lamar (ref. 9). At both subsonic and supersonic 

speeds the present method shows an overshoot near the leading-edge caused by 

the method trying to represent the exact continuous solution with finite 

panels. 

Additional comparisons for various configurations are presented in 

Table 4. The planform shapes used in comparison include straight, tapered 

wings and a family of double delta configurations of reference 16 which are 

illustrated in figure 10. The results indicate that the present method can 

predict edge suction force values that are in reasonable agreement with 

other methods, even for complex planforms. 
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So far only the lift factors and pressure distributions have been 

compared. The centers.of these forces- can also be accurately predicted. 

According to the method of suction analogy, the pitching moment of wings 

with edge-separated vortex flow can be calculated as (ref. 9): 

'rn = [Kpsinctcoscr c L+, 
r v,Re 

sin2o: s + Kv sesin2cc s] g 
r , r ref 

(32) 

The calculation of the center-of-force factors x 
P' 

Xae and Xse is 

compared in Table 5 for the cropped delta wing of figure 7. The results 

indicate that the centers of edge suction forces are well predicted by the 

present method. 

CONCLUSIONS 

Based on the extensive comparison of present prediction with other 

theoretical results, it msy be concluded that the present improved Woodward's 

panel method is generally accurate in predicting the leading-edge and side- 

edge suction forces and the centers of these forces in subsonic and super- 

sonic flow. The good accuracy of the present method has also been 

demonstrated for cambered and flapped airfoils. Because of generality 

of the panel method, the present improved method can therefore be used 

not only to predict the vortex lift of complex planforms through the method 

of suction analogy, but also to calculate certain lateral-directional 

stability derivatives as well. 
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Table 1. Predicted Aerodynamic Characteristics for 

Cambered and Flapped Airfoils 

I Airfoil I Aerodynamic 
I I I 

Woodward 
variable Exact Present (ref. 1) I 

circular-arc, 
with h/c = 0.0314 
CX= 00 

Flat Airfoil with 
30 deg. Flap and 
Flap Chord Ratio = 
0.30, c1 = loo 

CR 
X 

CP 

CR 

C 
m!Le 

(ref. 10) 
0.941 0.9345 Not Determined 

0.355 O-35575 11 

(ref. 8) 
3.265 3.30 3.212 

-1.152 -1.175 -1.192 



Table 2. Comparison of Predicted Lift Factors for a Rectangular Wing of A = 2.0 

M K K K v,Re v.se 

Present Lamar Woodward Exact Present Lamar Present Lamar Exact 
(ref. 9) (ref. 1) (ref. 13) (ref. 9) (ref. 9) (ref. 12) 

0. 2.4783 2.4763 2.5744 Not Available 1.4991 l-4997 1.5793 1.5489 mot 
Available 

0.2 2.4956 2.4934 2.5928 11 1.5027 1.5033 1.5978 1.5673 1, 

0.4 2.5507 2.5479 2.6514 11 1.5136 1.5142 1.6582 1.6272 11 

0.6 2.6553 2.6517 2.7627 11 1.5313 1.5323 1.7804 1.7483 I' 

0.8 2.8389 2.8354 2.9592 11 1.5537 1.5558 2.0292 1.9939 I’ 

0.9 2.9811 2.9783 3.1126 11 1.5634 1.5665 2.2791 2.2354 11 

1.1 3.7943 - 4.0393 ” 0. 2.5737 11 

1.2 3.6321 - 3.8114 3.7575 0. 1.8664 11 

1.4 2.9864 - 3.0975 3.0408 0. 1.2647 11 

1.6 2.5304 - 2.6129 2.5615 0. 0.9929 1.0194 

1.8 2.2062 2.2725 2.2262 0. 0.8301 0.8507 

2.0 1.9630 - 2.0181 1.9760 0. 0.7190 0.7351 



Table 3. Comparison of Predicted Lift Factors for a Cropped Delta Wing 

A = 0.874, X = 0.4 and A = 63' 

M K K 
v,Re K v,se 

Present Lamar Woodward Present Lamar Exact Present Lamar Exact 
(ref. 9) (ref. 1) (ref. 9) (ref. 12) (ref. 9) (ref. 12) 

0. 1.2968 1.2789 1.3632 1.5297 1.5041 Not 1.4325 1.396-i’ Not 

Available Available 
0.2 1.2999 1.2819 1.3667 1.5315 1.5046 I' 1.4408 1.4039 11 

0.4 1.3095 1.2911 1.3774 1.5371 1.5059 11 1.4673 1.4262 I' 

0.6 1.3263 1.3073 1.3963 1.5473 1.5078 I1 1.5164 1.4662 11 

0.8 1.3517 1.3326 1.4253 1.5647 1.5099 II 1.6004 1.5288 I1 

0.9 1.36-i-g 1.3500 1.4440 1.5790 1.5107 11 1.6668 1.5707 11 

1.2 1.5247 - 1.6330 1.0504 11 2.0902 11 

1.4 1.6140 1.7129 0.8407 II 2.0483 11 

1.6 1.6113 1.6973 0.6668 0.6885 1.9493 2.0749 

1.8 1.5732 1.6495 0.5084 0.5055 1.8400 1.9263 

1.5225 1.5892 0.3606 0.3244 1.7200 1.8036 

1.4583 - 1.5166 0.0242 0.0337 1.5514 1.6989 

1.3859 - 1.4404 0. 0. 1.3515 1.6079 
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Table 4. Comparison of Predicted Lift Factors for Various Configurations 

-_ -- ~.~ 
Geometry 

A = o" , A = 3.5 

A = 1.0 
__-. _ -.-_-- 
A = 45O, A = 1.0 

A = 1.0 

A = 45O, A = 2.0 

x = 1.0 

A = 7o", A = 2.24 

x = 0. 

(Arrow Wing) 

A = 6o", A = 2.0 

x = 0.5 

(Cropped Arrow Wint 

Model I 
(Figure 10) 

Model II 
(Figure 10) 

Model III 
(Figure 10) 

Model IV 
(Figure 10) 

-; ~-- -- - -~ 
Model V 
(Figure 10) 

M 

0.6 

_-- 
0. 

0. 

2.0 

1.5 

K 
P 

K v,se Methods 

2.481 1.279 

1.250 
..-_ --.- .---- 

2.489 

2.412 

2.040 1.874 

2.037 1.925 

0. 

0. 

Present 

ref. 9 

Present 

ref. 9 

Present 

ref. 9 

Present 

Exact 
(ref. 12) 

2.1461 Present 

2.262 Exact 
(ref. 12) 

0. 

0. 

0.7854 

0.7821 

0.8665 

2.2898 0.8803 

0.8227 1.8546 

1.2131 1.7706 

0. 

0. 

Present 

ref. 9 

Present 

ref. 9 

Present 

ref. 9 

Present 

ref. 9 

Present 

ref. 9 

K v,Re 

3.792 

2.480 3.778 __---_--.. ..- 
1.433 

1.431 

2.263 

- 
1.102 

1.101 

2.279 

2.1173 2.3656 

Not available 2.3733 

2.6060 

Not available 

1.3788 

1.4037 

1.8928 

1.8047 

1.3492 

1.3353 

3.1123 

3.1315 

1.9634 

1.8748 

1.4596 2.229-f 

1.4506 

0.4222 

0.4187 

1.9574 

t 

i 

+ 

-- 

3.5684 

1.8948 3.9653 
--__. - 

0.2 

0.2 

0.2 

0.2 

0.2 



Table 5. Comparison of Predicted Center-of-Force Factors for a Cropped Delta Wing. 
A = 0.874, A = 63', X = 0.4. (Reference Point at the Leading Edge of Root 
Chord). 

M -x lc -XRe/Cr -Xsehr 
P r 

Present ref. 9 Present ref. 9 Present ref. 9 

0. 0.4228 0.4353 0.3512 0.3576 0.8128 0.8150 

0.2 0.4226 0.4355 0.3519 0.3582 0.8126 0.8148 

0.4 0.4217 0.4361 0.3544 0.3601 0.8119 0.8144 

0.6 0.4197 0.4378 0.3589 0.3631 0.8106 0.8137 

0.8 0.4156 0.4428 0.3668 0.3658 0.8082 0.8129 

0.9 0.4111 0.4501 0.3730 0.3631 0.8061 0.8129 

-- - - - - - - - - - - - - - - - - - - - Exact - - - - - - Exact 
(ref. 12) (ref. 12) 

1.8 0.5295 Not Determined 0.3932 0.40 0.8082 0.8095 

2.0 0.5401 11 0.3967 0.40 0.8107 0.8095 
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1.0 
,5 

Figure l.- Resolution of Forces for Cambered Airfoils. 
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5.0 

4.0 

1.0 

0 

Present 
--- Exact (ref. 10) 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

4 

Figure 2.- Predicted Pressure Distributions for Circular 
Arc Airfoil, h/c = 0.0314, CI = 0.0 deg. 
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4.0 

AC 3.0 
P 

2.0 

1.0 

0 
I I I I I I I I 1 J 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

5 

Figure 3.- Predicted Pressure Distributions for Flat-Plate 
Airfoil with Flap Angle of 30 deg. Flap-Chord 

Ratio = 0.30, cx = 10 deg. 

I - 
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3.0 

AC 
P 

Present 
-me Woodward (ref. 
----- Exact (ref. 11 

2y/b 
----___- o 5 . 

--- - ------- -----_ oml(yjl 

I---- 0.8909 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Figure 4.- Predicted Pressure Distributions for Cropped Arrow 
Wing of A = 2.0, X = 0.5 at M = 1.5 and c1 = 1.0 

Radian. 
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5.0 

4.0 

3.0 

AcP 

2.0 

1.0 

0 

Present 
-__ Woodward (ref. 1) 

(ref. 11) 

2y/b 
0.8117 

I I I I I I I I I I 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Figure 5.- Predicted Pressure Distributions for Arrow 
Wing of A = 2.24 at M = 2.0 and cx = 1.0 Radian. 
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1.0. - I-J 
Present 

---- Woodward (ref. 1) 
-m-s- Lamar (ref. 9) 
----- 12 

0 
Exact (ref. and 13) 
Dillenius and Nielson (ref. 5) 

X 

2.0- 

K 
Vie 1.0- 

O- 

3.0 r 

KV se 

1.0 - 

0 0.4 0.8 1.2 1.6 2.0 
M 

Figure G.- Predicted Lift Factors for Rectangular Wing 

of A = 2.0. 
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63' 

b 
Y 

Present 
----- Woodward (ref. I) 
-*-*-.- Lamar (ref. 9) - - ---- Exact (ref. 12) 

2.07 x 

-B-w- -- -- 
K 

P 1.0 - 

0 I I I I I 

2.0 - 

I---- 

K 
'se 1.0 - 

O* I I I 

3.0 - 

KV se 2*o 

1.0 - 

0 

I I I I I 1 
0.4 0.8 1.2 1.6 2.0 2.4 

M 

Figure 7.- Predicted Lift Factor for Cropped Delta Wing 
of A = 0.874 and X = 0.4. 
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Present 
- - - - - Lan (ref. 7) 
-.-.- Lamar and Gloss (ref. 15) 
--- Lamar (ref. 9) .“\ 

A- i 
i i 

0 0.2 0.4 0.6 0.8 1.0 

1 I I I I I 

0 0.2 0.4 0.6 0.8 1.0 
5‘ 

Figure 8.- Distribution of Leading Edge and Wing-Tip 
Suction Coefficients for Cropped Delta Wing 
of A = 0.874 and X = 0.4 at M = 0. 
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rdsent 
Y ---- Exact (ref.11) 

1.0 - 

0 0.2 0.4 0.6 0.8 1.0 

2.0 

ct/ct2 

1.0 - 

I I I I 
o- 

1 
0.2 0.4 0.6 0.8 1.0 

i= 

Figure 9,- Distribution of Leading Edge and Wing-Tip 
Suction Coefficients for Cropped Delta Wing 
of A = 0.874 and X = 0.4 at M = 1.8. 
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Model I 
(A = 1.6) 

80’ 

Model IV 
(A = 0.2682) 

Model II 
(A = 0.9514) 

Model V 
(A = 1.8754) 

Model III 
(A = 1.076) 

Figure lO.- Geometry of Family of Double Deltas of Reference 16 

and Referred in Table 4. 
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